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Comparison of Gradually Varied Flow Computation
Algorithms for Open-Channel Network

Adlul Islam’; N. 8. Raghuwanshi®: R. Singh®; and D. J. Sen*

Abstract: This paper presents a comparison of two algorithms —(he forward-elimination and branch segment ransformation cquations—
lor separating out end-node variables for cach branch to madel both sleady and unsteady flows in hranched and looped canal networks.
In addition, the performance of the recursive forward-elimination method is compared with the standard forward-elimination method. The
Saint- Venant equations are diseretived vsing the four-point implicit Preissmann scheme, and the resulting nonlinear sysiem of equilions
15 sulved using the Newton Raphson method. The algorithn using branch-segment transtormation cquations s found to be at least five
times faster than the algorithm using the forward-elimination method. Further, the algorithm using branch-segment transformation
cquations requires less vomputer storage than the algorithm using the forward-elimination method. particularly when only nonzero
clements of the global matrix are stored. omparison between the Gauss-elimination method and the sparse matrix solution techmique for
the solution of the global matrix revealed that the Sparsc matrix solution technique takey less computational time than the Guuss-
elimination method,
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Introduction a handed set of lincar equations that can be solved uging an effi-

cient banded matrix solver However, the banded nature of the
Hydraulic simulation models s Frequently used or flow routing resulting system of equations is lost while madeling flow in a
in open-channel networks, Over the years, a number of hydraulic channel network consisting of a number of interconnecied chan-
simulation models have been developed 1o study the Nlow belay- nels joined at a number of Junction points. This is due (o the
ior in canal systems. The flow in an upen-channel network is presence of junction continuity and energy equations. Further. due
represented by unsteady, gradually varving, one-dimensiona! flow ta the presence of backwater effects at the channel junctions, the
eguations, commonly known as the Suint-Venunt cquations. The entire network needs 1o be considered as a single unit, and flow in
Samt-Venant equations, which consist of equations for conserva- all channels needs to be simubuted simultanecusly (Akan and Yen
tion of mass and mamentum, are nonlinear hyperbolic partial dil- 1981). Simultancous solution of the entire ch;zr-mei netwaork e

lereniial equations and cannot he solved analytically, Among dif-
ferent mumerical methods, the implicit finite-dilTerence method
has been widely used for the solution of one-dimensional un-
stcady open-channel flow nrablems tAmein and Fanp 1970,
Amein and Chu 1975 Joliffe 1984 Liv et al, 1992; Choi and
Muolinas 1993; Nguyen and Kawano 1995: Ser and Garg 20072).

Flow madeling in a single channel using a four-point implicit
Preissmann scheme is relatively simple, as it involves solution of

quires lurge compuier memory and computational effort, To re-
duce this computational difficulty. a number of algorithms for
stmulation of fow in a channel network have been devieloped
rethod (o simulate transient flgw
in it canal network assuming tributary flow as lateral inflow. Akan
and Yen (1981) used overlapping segment techniques so that a
large network could be decomposed and solved as g series of
smaller Y-shaped networks. Joliffe (1984} used a sparse matrix

Fread (1973) used an iterative |

—_—— — algovithm to store and solve the lincarized set of equations. Swain
Research Scholar, Dept., of Apricultad & Food ineering, Indian and Chimn {1990) employed a matrix diagonalization scheme liy
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make the malrix more diagonally banded and solved the matrix
using a banded matrix routine,

agfe fitkgpermet in Other  sudies  have r.'nnlaialcc'c_d specific node numbering
“Prafessor, Dept. of Agricultural & Food Engincering, Indiin Instinte schemes to reduce the bandwidth of the resulting solution mantrix
of Technology, Kharngpor-721 300, India (Kuo 1980: Chaudhry and Schulte 1986: Schulte and Chaudhry
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hunnel network s diffi-
cult, whereas use of recursive relationships requires relatively less

18 scheme for a gencral

computer storage and computation lime, The recursive relation-

and possible

publication on May 15, 2004z approved on Avgus 24, 2004, This paper is ships devcloped by Choi and Molinas (1993} and Nguyen and
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£25.00. work. But these algorithms have certain limitations, The algi-
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rithm presented by Choi and Molinas (1993) 15 limited o three
converging or diverging segments at the junction, whereas the
algorithm presented by Neuyen and Kawano (1995) is applicable
ti monlooped channel networks containing junctions of up to four
branches. and reguires a specific node-mumbering order.

The other catcgory of algorthms involves reducing the num-
her of cquations for the simultancous solution phase (Wood et al.
1975: Schaffranek ct al. 1981; Sen and Garg 2002). The simulta-
neous solution algorithms of Schallranck et al. (1981) and Sen
and Garg (20021 require simultancous selution o 40 > 448 ma
trix (M is the number of branches), and are applicable in looped
as well as dendritic channel networks.

The simultancous solution algorithim presemed by Sen and
Garg (2002) uses the Newton—Raphson methad for the selution of
the nonlincar svstem of equations. The forwuard-elimination phase
ol this aleorithm scparates oul the end nodes of each brunch and
gives two equations per hranch, This phase requires solution of
AN-1) % 2N matrix, where N s the number ol computational
pointsinodes per branch. The variahles corresponding to end
nodes (active variables) ol ecach branch {oblained after the
forward-elimination phase), along with necessary boundary con-
ditions, result in o global matrix of size 4AM <4M. "This global
matrix is then solved vsing the Gauss climination method in the

simuliancous-salution phase. The fow variables at the intermedi-
ate nodes for each branch are computed in the back substitution
phase. This solution algorithm is reported to be 80 times [aster
than the band solver, and has reduced storage requirements. This
algorithm, however, does not tike advantage ol the banded nature
of equations and solves Tull equations in the simultanecus
solution phase. Further, the matrix is banded in the [orward
climingtion phase and thus un clficient soluton and more compact
storage are possible. Fread (1971) presented recurrent formulae
for solving banded systems of equations Lo reduce the compater
storage requirement and computational time. In comparison to the
standard Gauss-elimination method. this approach reduced the
slorage reguirement [ram AN? 1o 8N and the sumber of computa-
tuons from 2:_-NJ FINGY Lo 3BN {Fread 1973).

In the branch model developed by Schattranek et al. (1Y81L
the Saint-Venant equations are linearized by splitting up each
lerm in the equations into a linear teem and & coetlicient thal is o
function of the independent variable. This muodel uses branch-
segment transformation equations to relate the end nodes of a
branch, and the resubtant branch equations (2M equationsi along
with the boundary conditions arc solved uwsing the Gauss-
elimination method with masimmn pivol strategy, This model
alsa requires simultancous solution of 447 > AM matrix. Swain
and Chin (1990) observed thut for stringent-solution convergence
criterion {i.., stage convergence of 0.003 m and discharge con
vergence of 2,835 10 F m'/s) the network maodel, which uses the
Newton—Raphson method for solving the systems ol nonlinear
partisl dilferemial equations, is three times Taster than the branch
maodel. However, [or larger values of the convergence crileria
{i.c., stae convergence of (L0033 m and discharge convergence
gregter than 2833 10 7 m'/s), the branch model solves the sys-
tem ol equations three w five thimes faster than the nelwork
model

‘This puper presents a comparizon of two algorithms for mod-
eling flow in branched and looped canal networks, The lirst algo-
rithm (Algorithm-1) uses the forward-elimination approach (Sen
and Garg 2002) and the second algorithm {Algorithm-2) uses
branch-segment transformation equations (Schaffranck et al.
1981) for linking end-nodes of a branch. To reduce the starage
requirements and computation time in the forward-glinination

phase for Algorithm-1. only nonzero clements [2(8=1)1x4] are
stored and solved efficiently using recursive relationships. In ad-
dition, the performance of this alporithm is compared with the
standard forward-climination method. Further, # comparison s
made between the Gauss-climination method and the sparse ma
trixz solution technique for the solution of the globul matrix

Governing Equations

The gradually varied one-dimensional unsieady  open-channel
Mow equations are described by the Saint-Venant cgnations.
These equations deseribe the equation of continuity {conservation
of mass} and equation of motion {conservation O momentum),
and are expressed as
Continuity equation

a2 A
— 4 ——g=1 (1)
ax o
Dy namie equarion
a0 2 (PO 4
F— | +gA— +gAS;=0 (2)

ot arh A4

where (I=dischurge: A - cross-sectional area: g=Iateral inflow;
B=momentum correction factor: g=acceleration due (0 gravity;
Z=waier surfuce elevition above horizontal datwm; §={riction
slope; y=longitudingl distance along the channel length; and
r=tlime,

The friction slope term 8§, can be estimated using the Man
ning’s equation

where n=Manning's rooghness coeflicient; and R=hydraulic ra-
dins (ratie of the cross-sectionsl sren 1o the wetted perimeter),

Boundary Conditions

The numerical solution of the Saint-Venant equations requires
h.|1|.‘,ci!h.'.1[iilllh ol the boundary conditions al the soorce and outlel
nodes. The continuity and momentum equations described above
are applicable within channel reuches only, For ather elements of
a canal network such as junclions or hydraolic structures, two
equations cquivalent to the Suint=Venan! equations are required.
The hydraulic conditions at the juncuons can be expressed by
mass und cnergy conservation eguations. Assuming no change
storage volume within the junction, the continuity equation can be
wTHlen a5

>0 -0, (4)

Assuming that the junction losses and the differences in velocity
heads at the junclions are negligible, the energy conscrvation
equation at the junction points can be approxinmated as (Akan and
Yen 1981 Naidu et al. 1997)

h+z=h,+2, (5
where fi=depth of water: z=bed elevation: and subseripts i and o
represent inflow and outflow, respectively. If the bed elevalions of
the chanmels meeting at a junction are the same, Eqg. (5) can be
WrILEn ds
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Fig. 1. Jacobian matrix for a branch
hy=h, (6 BAS™ +CA8 4D, =0 (7)
where
v " | AZ fa / |
Solution Algorithm AGTH _ | £ B = | f-iti-e gy
M _W | _| 4 [r.': Yoy I
For the solution of the Saing Venanl equations, Eqs. (1) and (2)
are discretized us sing the fow point implicit Preissmuann scheme |,J o vt | rh'f-}-- ]
; - & I i ¥ o i 4 -]
(Cunge et al, [980). Discretization of Eqp. (1) and Fa. (2) resuls C.= v Th= S3i |
e ot TR L33 | L&Fm, |
1 a system of nonlinear cquations, These sysiems of nonlinear . :
cguations are then solved using an Merative _\’L"\\'[n.“.--Hzllﬂh.\cl.‘: wheit j=1.2.3... . (N=1) nd
micthod Application of the Newlon— Raphson method lor the jih
section, which links two conseeutive compur; sional points Foand . . i‘ : i‘__
J+ 1, results in the following equation ' Az, a0,
32
* -2
21
3

24 39
250 —aq— — =10
24 23 1
3 107 38
11 27
g —— -8 28
25 2% 26 27
I 39
12 40
Fig. 2. Branched canal .\h twork-1 [adapted from Naidy ¢ al. (1997
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Fig. 3. Looped canal Network-2

LULL, F

7} e .

o JFe A
5 Ayt el =y v g =T

E ’ Lz ) 2
-

PETTNINSION. L Bpvrie:

2.0 LR

G 0T 15

S =8~ AS (8) 2

E

: Fmy by

0 a1 £33 . LS e T po

i 202 47, UHT a0,

g

“
5 2 Fm i . . e . "
2 E faja = - I'!: (3]s = il Tabile 1. Choructeristics of Canal Negwork-1
= = AR Ay Py
g5 Manning's
] Here, the functions Fo and Fr represent contimuly and momen Cunal  Lenpth Bed width  Side Bed miighness  Number
= . . - . b . A ) . PRI P - i -
1 g tum equations, respectively; and veetor 1) represents the residuwals e {m) LN slope slope  coclficient  of reaches
£ 3 : . ! 2 =) : — Fa—— - - ===
K- for continuity and momentun equations, The apdated values of 2 i 2.4 200 000013 0013 0
_,-_ g and @ at {/+ 1 hth tteraton are computed as Tollows 2 2 000 10 000015 0016 A
= 5
y B

4 20 ooy 0ols 15
= = 0 G AT ] R e e | el e . g s [l
= For the solution |.I}11:.1:.LhuJ and looped cunal networks, the fo E i 500 26 BO20 0070 5
:E = 1[3'«\!!'.9, wo a *H"Th R R Bh T
2 E g hwoaly b e G . , N | 400 a0 000021 0020 15
g g Algorithm 1: In the solution algorithm developed by Sen and i | 3 s ot : 00022 0.0 G
B . kg 4 et ) . 7 200 3.00 2.0 000022 1,020 I3
= e Gare (2002), the Jacobian matmx lor (N=1) sections was ar
4 ® : ; H s 8 1000 2.00 20 00 o2 10
) ranged as shown in Fig. | and solved using the Gauss-glimination
= i ; AR ! it L Y LA L0 000025 002 15
B = method to separate ont the variables corresponding 10 end nodes.,
N e 3, ' 3 5 i TNy - oy 1 U0 VI E
%o In the present study, nenzero elements of the Jacobian matrix e 0 1,200 - 4 o002z 0022 13
5 T 5 5 ' - . i e a5 f MY A v -
= = stared as 2(N=1) ¥ 4 matrix and solved using the following rela- H 1,000 173 10 000024 (22 13
E Lionships: 12 (Y 250 20 000022 0,022 15
= - b
e & 13 1.200 | .50 1.0 0.00025 o 15
. ¥
Zz (9] 14 1000 1.00 200 000022 0022 15
< 3 15, 14 1000 1.50 20 0.00004 0.022 (0
on S 16, 21 | 030 100 1.0 0022 ¥
S g Cili 20 000 1.75 20 (.022 It
g o
g [y 9 Y00 0,90 0y 00002s 0.022 ]
s = 20,23 LIGO 150 20 000024 10
% B o 17 1,200 1,75 100 000024 ]
E = (11) ) ) - i
2 E 24 1,000 100 1O CON025 0025 10
= 0 .
R = 25 1,200 200 200 000024 Rl 1
: 2 ¥ [ X1 ¥ ) 17 400 1.50 2400 000024 D022 ]
= 32 Xj=—1— 1+ Xy {12) y . . .
£ % | I JEy i . 90 |50 L0 000025 0022 10
5 B M) |0 L0 0.00025 0.022 %
I [fac 00 1.25 200 00M24 0022 4
. ] =1 |._ = Y (13 1 700 0,75 1 00004 0022 g
J a2 8 3 | i E i = 5
1241 0 .50 B0 a0 0030 5

460 / JOUBNAL OF IRRIGATION AND DRAINAGE ENGINEERING 8 ASCE / SEPTEMBER/OCTOBLH 2005

. Trvig, Drain Eog, 2005.131:457-4635




TiPT, [ E———

LA e

¥ of Civil Engineers. All rights reserved,

2. For personal use only. No other uses wihout permission, Copyright {¢) 201 2. Amenican So

m ascelibrary.org by Adlul [slam on 08/27/1

Downionded fro

Table 2. Characteristics of Canal Network.2

Table 3. Boundary Conditions for Canal Network- 1

]'\'Tul]nin\:_"!.'

Flow depth
{m)

w9l
1.6550
09759
0.9(27
LGO2Y
|.B784
16729
1.3622
1.4766
11741
1 .0749
1.4777
17107
2.0070
12190
| 4745
137149
L6091
13310
1.2535

Canal Length Bed width — Side Bed  roughness Number of Node number
number {m) (m) slope slope  coellicient  reachey 1‘
1.2,8.9 }.500 10 1 0.00027 0.022 5 0
3.4 3.000 10 l 000047 0.025 30 12
5,67, 10 2,000 10 1 000030 0422 20 15
11 1,200 0 Vertical Q.4H33 0.022 1 I8
12 3,600 00 Verieal 0.00025 0022 it 2
13 2,000 20 Vertical (LODOZS  n022 20 22
I 2,500 30 Vertical  0L00016  0.0272 % 25
' 28
A
: r:_.'J.[ () | [/a L n
=" [ ]ri =~ €t | [ i e |rf (14 13
Gps | vy ) o T =
3
. ; ; 15
- ‘{; "'er.. 1.2 | ‘( 1 | . o ¥
Xp=— |— |:r.-_|—r;i1 - |I — Ja, - X, (13) o
Y R TR, (RN, ] 38
where { denoles the row number: ¥ .Jcnvlm REm or RFe as the i
case may be; and k- 2N¥=3 and 2N- )
Egs. (Y1-(15) ure sequentially applied for 1=2.4.6 8. .. 41
2AN-2) 42

Algorithm 2: In this algorithm branch- -segment transformation

equations [Schaffranek ¢t al,

1981) were develaped by combining

a series of equations between 1wo consecutive nokes in g branch.

By rearranging, Eq. {7) ean be writien as
¥ | . a == | "
AST =F.A8"" + G,
where

==C7'B;; G,=-C,;'D,

Eq. {16] i3 in a recursive form with respect to AS L, and repeated
application of this equation for seclions | th mu"h IN=1] resulls

in the following equation for a branch

ASy* =rAS™ 4 @

where

and

Dischargs, m s
@

F
J
|
!

(@)

Fig. 4. Boundary condition for canal Network-2

G=G,+F|G,

(REY!

FE LG 24 F Gyt - ) oo

FFi(G + FyG)] )

Eq. (17) now represents two e uations for one branch, ind hence
I

28 X 2M matrix for M branches,
branc h-segment transiormation eguations
Newton—Raphson method and hence resulis are obtained in terms

It ts to be noted here that the

are used here with the

of error variables (AZ,AQ), whereas in the branch model devel-

oped by (Schalfranck et al,

98 1) the branch-segment (ransforma-

(17) tion equations are used foi solving the linearized form of the
Saint=Venant equations, Use of the NL\'-IHI"—R"I[I"WOI! method for
the solution of nonlinear system of equations in both the a 20-
rithms  will  enable comparison ol Ich\'.-ar(l-L'Il-nrs:.L[mrl
(Algorithm-1) and  branch- segment  transformation  equations
{Algorithm-2) for ¢ sstablishing two nodal equations per branch.
*
29
28 4
& 91
E' 26
o
25
- 24 -
R e . .
30 40 1] 10 20 30 40
Time, h
(b)
fa) disch ||u, hydrographs at nodes 1, 2, 3, 4. 5 b, 7t (b stage hydrograph at node 14
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Table 4, Computed Discharge and Depth for Canal Network-|

Table 5. Computed Discharge and Depth for Canal Network-2

Model-1 Nurcda et al. {1997
Lip Dorwn- Up- Mevwen
sfrésum shncim shream  sirciim
Canal {TES depth depth  Discharge  deplh depth
nunher i sl {imi L) fm fs) T Lmi
| 4000000 2.1925  1.H66S 199958 21921 1.8664
2 26315 8665 16824 26295 L8661 1GR2I
J 16,9734 | 6E24 L3050 16,9722 | 6821 15045
4 11.3153 15050 08111 11,3176 15045 (09111
5 15,3085 186G 165060 15,3660 Pachd 16303
4 L0926 l.es0s L3166 100397 L6503 LSIGS
] 63536 Lalnt  1.5334 6.3520 I.5165 15333
[ 1A 1.5334 1.6359 38329 [.53333  1.0550
1 T.H3KH2 | 6824 L3S 71.6876 16R21 1.3403
10 39378 1.34405 1.003G 19379 L3403 1LIN36
11 19336 10036 09759 19537 10036 DYT5Y
12 . hSR0 1.5050 14055 5.0547 15045 1.40d4%8
= 2873 1455  DU848 Z.BTR3 AR OR45
i4 | 4036 0.9848 09127 14032 0.o845 09127
13 5.2759 |.6355 52762 1.6503 16352
16 30794 1. 4233 JUT78hR 1.6352 14232
17 23156 16021 23152 14232 Lel2i
I 2.5197 1 7128 25141 1.5333 L7128
19 14327 1 BT84 1.4325 1.712% 1 8784
20 EAEL |.6026 3. 1377 L5tes  LLed2s
A | 220000 1e026 16729 2.2065 1.6025 16729
22 3.7203 13405 12660 397 | 3403 1.2658
A 257 12660 13425 2.5718 12658  1.3424
24 1.4614 1.3425 13622 612 1.3424 13622
25 |.9842 10036 L1098 10842 LOOZ6 L1098
26 14621 11098 1.2815 14624 [IDOR 12813
27 | 0850 12515 14766 | (1853 [ORIS 1AYGh
¥, 27787 14055  1.2696 21164 T AGIE  L26Y3
2 17082 126096 1LIT74] 1, 7083 12693 11741
30 14757 09848 10017 1.+751 DO845 LG
3l 10341 1LOBT7  1.0749 10338 100G 10749
32 21964 16355 1 .4777 L1976 1.6352 14777
33 (1.763% 14233 L7107 11.7634 14233 L7107
34 10870 17128 2.0070 1.0B00 17128 200710
35 1.5320 1a026  1.7769 1.5313 L6025 17769
6 1.1467 12660 1.2190 | 1469 1.2658 1.2190
37 Y e L3425 147435 I 1116 13424 1.4745
3R 0.5221 lagues L3714 0.5204 LIO9E  157IY
N 03771\ 12815 1609 03770 LR8I 1009
Al [.605 12696 13310 (VS 12603 13310
1LO07  1.2335 [N R 1LAODEe 12335

41 04416

Simultaneous Solution of Global Matrix

For the solution of the global matrix. the Ciauss-climimbion
method with maximum pivot strategy is used. Since this glohal
matrix is sparse. it is ulso solved vsing the sparse matrix solution
technique. The sparse matrix solution lechnigue requires storage
of enly nonzero elements along with row and column identilicrs,
and hence results in reduced storage requirements. The sparse
matris solution technique used in this study employs twe partially
pucked arrays, one for sloring nonzero elements and the wther for

Model-1

U psfream D pstreium

€ unal Mischarge stuge stage

nuinber i s) i {m)

I ARALAIEH 36938 35802
2 100000 16938 3.5802
3 EERH NS 4243 3.5802
' 10000 22434 3.5802
3 10,0600 38363 3.7396
b 100000 38363 1. 7396
7 10000 383063 1.7396
4 00000 JAR02 3.2508
4 200 35802 3.2508
1] L0000 17396 31723
(8 11,2503 32508 31723
2 297437 * 2.H850
[ B 40,2563 34723 28850
14 T0.0000 2.885() 2.3000

column wentification, In this algorithm the row hiving the mim
mum number of nonzero elements is selected as o pivotal row,
and the column having the largest absolute value within the piv
otal row is selected as the pivolal column o avoid instability
(Gupia and Tanji 19771

Thus. in this study, Tour different models were developed
using different combinations of algorithms and global matrix so-
lution technigues, These models are referred Lo as Model-1
(Algorithim-1  with the Gauss-climination  method). Model-2
{Algarithm: | with the spurse matrix selution technique ). Model-3
{Alaprithin 2 with the Gauss-elimination method), and Model-4
{Alzorithm 2 with the sparse matrix solution techniguel.

Comparison of Algorithms

For comparing the performance of the two algorithms and global
matrix solution approaches, compuler programs were written in C

consists of five nuin components/!

lanpoage. The  program
Functions: (1) functions for computativng of coeliicisns of vee-
tors By, Cp, and D2 {21 a function lor forward-climinationfbranch-
segment transformation; (3} a function for establishing continuiry
and energy equations at junction nodes; (41 a Tunction for the
Crauss-climination/sparse matrix solution technigue. and {31 a
function for back substitution. For comparing the accuracy and
computational efficiency of the algorithing described abave, 1wo
canal networks  (Network-1 and Network-2} were selected.
Network-1 is a branched canal network having 41 branches
(Nuidu et al. 19977 and Network-2 is a looped canal network with
14 branches. Network-1 is divergent type and Network-2 is con-
gation and drainage sysems,

1l

vergenl ype. representing typic
respectively, Network-1 and Network-2 are shown in Frg. 2 and
Fig. 3 and their general charcteristics are aiven in Table 1 and
Table 2, respectively. Results related 1o the performance ol the
recursive  relationship i the  Torward-elimination  phase  of
Algorithm- I, comparison between Algorithm-1 and Algorithm-2,
and comparison between the sparse matrix solution echnique and
Gauss elimination method for the solution of the global matrix

are presenied in the following scetion.
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Table 6. Comparison of Solution Time and Global Marrix Size for Steady Flow Simulation

Tinee per
Cilobal iteration
Model Alporithm matnx solver” (s
Algorithm-1" GE 0.4177
Model-1 Algorithm-1° ik 0.3788
Muodel-2 Algorithm-1° 5 D320
Model-3 Algorithm-2 GE (L0820
Model-1 Algorithm-2 5 0.0213
*GE=Ganss-climination; S - sparse matrix solution echnigue,
*Forward-climination done using standard method,
“Forward-elimination done using reenrsive relitionship,
Results and Discussion
Steady-State Flow Simulation
Ihe Saint-Venant equations, with time derivates equal 1o zero,

were solved using the finite-difference method for simuluting the
sleady-state Now condition for the chosen branch canal network
(Network-1} and the looped canal network iNetwork-2). The
boundary conditions for canal Network-1 and Network-2 are
given in Table 3 and Fig. 4, respectively. In the case of
Network-1. the inflow at node 1 was 40 m*{s. For convergence of
solution, a tolerance of 0.0001 was used for [AQ/O| and AR
for all the four models,

The number of iterations (six fon Network-1 and four for
Network-2) required to converge the solution was the same for all
four models since they employed the same solution lechnigue
Furthermore, all four models gave the same values of computed
discharse and depth at the upstream and downstream ends, aod
hence results for only Model-1 are presented here. Computed dis-
charge and depths (upstream and downst ream) for Network -1 are
presented in Table 4 und these values wre almost identical tw those
given by Naidu et al. (1997). The muximum vartation in discharge
and upstream and downstream depths was 0.03% (branch 40),
0.05% (branch 28), and 0.05% (branch L2), respectively, This
ht variation may be due w0 the iterative solution lechnigue
usecd by Naidu et al, (1997}, The computed discharge and water
surface elevation for Network-2 are given in Table 5,

Network-1 was selected to compare the performance of the
recursive relationship in  the lorward-elimiation  phase o
Algorithm-1. As expected, the use of recursive relationships in the

sl

3.9 1 —e—Node 11
37 —a—Node 12
35

Esj J

T34

w
29
27
254 - ——

0 10 20 30 40

Canal Network- |

Canal Network-2

Time per

Global malrix size Heration Global matrix size

{mumber of vu {s) {number of variable)
let A4 —_
26896 (L0830 il3a
408 00810 140
26H800 0.0283 3136
N7 0.0254 126

forward-elimination phase resulted in faster solution (3788 s
per ileration) as compured 1o the stundard forward-climination
methad (04177 s per iteration) (Tuble 6). 1t is to be noted here
thit in both cases only three rows [ie., when the first row is the
pivotal row, second row, and Tast lwo rows (Fig. 1}] and four
columng are updaled.

Fhough the solution was obtained after the same number ol
iterations. time taken per iteration was different for all the models
(Table 6). For Network-1, Algorithm-2 is about five (Model-3
versus Model-1) o fifleen times (Model-4 versus Modal 2} faster
than Algorithm-1. In the case of Network-2, Algorithim-2 is abom
three 1o four times faster than Algorith-|

The models using the sparse matris solution technigue are
12 the Gauss-climination method. Fo
Network-1, the sparse matrix solution technique was abow .2
{Model-2 {Model-4
Mudel-3) faster than the Gauss-elimination method, Similarly, for
Metwork-2. the sparse matrix solution technique ook less time as
compared 1o the Gauss-elimination method. Thus, the model

faster than the models usi

versus . Model-1) o four times VErsus

using the branch-segment wansformation technique for linking
end-node variables und the sparse matrix solution technique for
solving the global matrix resulted in Faster solution as compared
W0 other madels.

Unsteady-State Flow Simulation

For unsteady-tlow simulation, Network-2 was considered and
steady-state discharge and depth were used as initial conditions.
The computed stage and discharge hydrographs at a lew selected

15 - —e—Node 11
14 —a— Node 12
13
E
512
=]
11

»
210

4 L

0 10 20 30 40
Time, h

Fig. 5. Computed stage and discharge hydrographs al selected nades
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Table 7. Comparison of Solution Time and Global Mattix Size for
Unsteady-Flow Simulation

Global

Globul Tintal Mrix shze

i simuiition fime fnumber of

Meulel Algorithm solver” (&) variables)
Algorithm-1" GE 13.446 3136
Modal-1 Adgoritam-17 GE 12.625 3l36
Model-2 Adgorithin-1" 5 11,375 T
Maodel-3 Algorithin-2 GE 3168 3136
Maodel-4 Alporithm-2 5 305060 14

'GE~Gauss-climination; S=sparse mutrix olubion o,
T
Forward-elinmnation done vsing standard method.

"Forward-climination done using recursive relatonship,

nodes are shown in Fig. 3. Similar o the steady-state cuse, all the
models gave the same depth and discharge. Furthermore, the
number of iterations required for the convergence of the solution
was also the same for all the models. However, the tomal compu-
tation time required by dilferent models was different (Table 71,
In this case Algorthm-2 was Tound to be Taster fabout 4 fimes)
than Algorithm-1, and the spurse matnx solution technique was
Lasler than the Gauss-ehmination method.

Storage Requirements

When the Guuss-elimination method is used tor solving the global
maitrix, the matrix size for both the algorithms remains the same
(4M > 4M). In the case of the sparse malrix soletion technique,
only nonzero clements are stored. and the number ol nonzero
clements depends on the approaches used [or linking end nodes.
In general. the branch-segment  transformalion  equations
{Algorithm-2) result in six nonzero active variables (three for the
continuily and three for the momentem equation) per branch,
whereas the forward-elimination method (Algorithm-1) resulls in
cight nonzero active vanables per branch. For Network-2. the
respective numbers of nonzem active variables for Algorithm-1
and Algorithm-2 are 168 and 140 (Table 71 The number of non-
#ero elements was further reduced in the case of steady Mow doe
1o absence of the time derivatives in the Saint—=Venaml equations
The respective numbers of nonzero clements for Algorithm-1 and
Algorithm-2 are 408 and 367: and 140 and 126, respectively, for
Network-1, and Network-2 {Table 61, Thus, while storing only
nonzero elements for the solution of the global matrix, the storage
requirement is less for Algorithm-2 than Algorithm-1,

Conclusions

For the solution of gradeally varied flow in open-channel net-
works, the Saint—Venunt equations were sulved wsing the four-
pont impheit intle-difference scheme, and the Newton-Raphson
method was used Tor solution of discretized nonbinear cquations,
A comparison wis made between two dilTerent approaches lor
developing branch nodal equations—namely, Torward-elimination
{Algorithm-1)
{Algzonthm-2}, The results showed that the branch-segment trans
formation equations (Algorithm-2) were Taster than the forward

and  brunch-segment  transformation  equations

climination method {Algorithm-1). Also, the algorithm using
branch-segment transformation equations required less compuler
starage than the algorithm using the Torward-elimmation ap-

proach. Companson betwesn the recursive Torwmd-clinination

and the standard Torward-climination approach showed that the
recursive-lorward-climination teok less time (about 1049) per it-
eralion than the stundard forward-climination method.

I'he performance of the Gauss-climination aml the sparse mi-
trix solution lechnique was compared for the selution of the glo-
bal matrix. The sparse matrix solution technigue was foumd 1o be
laster than the Gauss-elimination method particularly for largs
and complex networks. Thus, it can be concluded that a madel
using the branch-segment transformation equations for linking
end nodes, and the sparse matrix solution technique for solving
the globul malrix.
time and stwrage requirements for simulating open-channe! Now
under both steady and unsteady conditions,

results in significant savings in computation

MNotation

The following symbols are used in this paper:

A = gross-sectional area;
¢ = elements of the Jacobian matrix;
B, C; = vector representing the Jacobian for jth section;
D = vector of residuals for continuity and momentum
cuation:
F. G = transtormation matrix for a branch:
Fe = Tunction representing continuity equation;
F;. G; = transformation matrix for jth computational
section:
Fim = function representing momentum eguation;
g = wacceleration due 1o gravity;
by = ={L'J|'I[;'. of water;
M = wial number of branches in lhe network;
N = number of nodes i a branch;
o= Manmng's ronghness cocllicient:
po=total number of nodes in the network:
@ = discharge;
g = lateral inflow;
hydraulic radins;
§ = solution vector;
S, = Friction slope;
! Lime:
v longitwdinal distance;
7 water surface elevation:

o = hed elevation; anmd

5] momentuam corection [acetor
Subscripts
i = index for incoming channels:
o7 indexa for computational pomi;
ko4 = index for row number;
i index Tor outgomg channels; and
tn = index for time.
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