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FALLING WATER TABLES IN HORIZONTAL/SLOPING AQUIFER

By A. Upadhyaya' and H. S. Chauhan’ .

ABSTRACT:

To describe falling water tables between two drains lying on a herizontal/sloping impermeable

barrier, analytical solutions of the Boussinesq equation linearized by Baumann’s and Werner’s methods and
numerical solutions of the nonlinear form of the Boussinesq equation using finite-difference and finite-element
methods were obtained. A hybrid inite analytic method, in which the nonlinear Boussinesg equation was locally
linearized and solved analytically after approximating the unsteady term by a simple finite-difference formula
o approximately preserve the overall nonlinear effect by the assembly of locally analytic solutions, was also
used to obtain a solution of the Boussinesq equation. Midpeints of falling water tables between two drains in a
horizontal/sloping aquifer as obtained from various solutions were compired with already existing experimental
values. Euclidean L2 and Tchebycheff L. norms were used to rank the performance ol various solutions with
respect to experimental data. Tt was observed that the performance of the hybrid finite analytic solution is the
best, followed by finite element, finite difference, analytical with Werner’s linearization method, and analytical

with Baumann's linearization method, respectively.

INTRODUCTION |

Most of the subsurface drainage theones related to ﬁatllandq
or moderately sloping lands have been developed by ubhﬂnuu__,
the solution of partial ditferential equations derived by Bous
sinesq (1877, 18904), based on the principle of conlinuitj'r and
Dupuit-Forchheimer assumptions. Many investigators, such as
Schmid and Luthin (1964), Guitjens and Luthin (1965), Chau-
han et al. (1968), Childs (1971), Towner (1975), Jaiswal and
Chauhan (1975), Singh and Jacob (1977), Chapman (1980),
Sloan and Moore (1984), Yates et al. (1985), Sewa Ram and
Chauhan (1987a.b), Fipps and Skaggs (1989), Shukla et al.
(1990, 1999), Sanford et al. (1993), Brutsaert (1994), Pi and
Hjelmfelt {1994), Kalaidzidou-Paikou et al. (1997), Koussis et
al. (1998), Connell el al. (1998), and Steenhuis el al, (1999),
have ohtained analytical, numerical, or experimental solutions
of linearized or nonlinear forms of the Boussinesy continuity
equation to describe spatial and temporal variation of water
tables in an aquifer resting on a sloping impermeable bar-
rier. A hrief review of these studies has been presented by
Upadhyaya (1999) and Upadhyaya and Chauhan (2000). Most
of the analytical solutions obtained are approximate because
of the lincarization of the governing cquation, Numerical so-
lutivns of nonlinear equations are better than the analytical
solutions of linearized equations. However, the accuracy of
such solutions can be tested by comparing the results| with
experimental values considering the latter ones as the bench-
mark solution. The objective of this paper is to obtain analyt-
ical solutions of the linearized Boussinesq equation and nu-
merical solutions (based on finite-difference, finite-element,
and hybrd [nite analytic techniques) of the nonlinear Bous-
sinesq equation to describe falling water tables between two
drains in a horizontal or moderately sloping aquifer and com-
parison of predicted water table clevations with the experi-
mental results obtained through studies of Chauhan (1 967‘5} and
Chauhan et al. (1968) simulating falling waler tables for the
horizontal and sloping cases on a vertical Hele-Shaw model.
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BOUNDARY-VALUE PROBLEM AND SOLUTIONS

While formulating the boundary-value prohlem for falling
water tables between two conventional parailel drains, it is
assurned that due lo instantaneous recharge the water table has
reached the land surface and it falls because of drainage of the
aguifer. The nonlinear second-order partial differential equa-
tion derived by Boussinesqg (1904) to describe falling water
tables between two drains located in a sloping aquifer may be

written
o fan\ ah ai
LN (C”) —u(—]=i—i (1a)
ax ,9x 8x) K at
and for a horizontal aquifer (considering o = 0)

ath (9&)2 _fon

I-_ -
K at

(1b)

ax \ 2%,
Here h = height of water table above the impermeahle barrier
(L) at a distance x and time f; o = slope of the impermeable
barrier having a small value such that o = sin o = tan o; K =
hydraulic conductivity (L T7'); and f = drainable porosity of
the aquifer.

Twao techniques may be used to linearize the nonlinear equa-
tions [(1a) and (1#)]. The first technigue, known as Baumann's
technique takes hix, t) = D + &(x, #), where D is a characler-
istic depth and & << [, and by neglecting higher order in g,
eliminates (84/ax)*. The second technique is based on Werner's
tmm.fmmmon, z = A, and linearizes equations by setting

(1) (8z/dt) = (1/D)-(9z/dt). Here the characteristic depth
D = hy/2 or average depth of flow and h; is initial water table
height above the impermeable -barrier. After applying the
above linearization techniques, (la) corresponding to a sloping
aquifer can be expressed as (2a) and (3a) whereas (18) cor-
responding to a horizontal aquifer can be expn:cch as (2h})
and (35) as below

LI (ahﬁ) _1akh Fh_1ak e
P | L o = e a T - sl
ax ik oot ox a ol

%z fac\ 1dz %% 1

— T) o iy (3a.b)
ax X i} di’ ox a ot

Here a = KDIf, and 5 = of2). Imitial shape of the water table
may be assumed flat, parabolic, or elliptical, depending on soil
characteristics, In this study, a flat initial water table near the
land surface and zero water table at the drains (aeglecting the
effect of a seepage surface) have been considered. The defi-
nition sketch of the flow problem is given in Fig. 1. The initial
and boundary conditions in mathematical terms corresponding
to (la), (15), (2a), and (2b) mav be written
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FIG. 1. Deifinition Sketch of Falling Water Table in Sloping Aquifer

e, M=hy att=0 forl<x<L {da)

MO, =k, D=0 ati>0 forx=0andx=L (4

whereas, corresponding to (3a) and (3b), these conditions are
Zx, )=h=2z ai=0 for0<x<lL {5a)
20, 0=2z(L, =0 atr>0 forx=0andx=L (5b)

Here Ay represents initial water table height above the imper-
meable barrier.

Analytical Solutions

An analytical solution of linearized Boussinesq equation
(2a) with initial and boundary conditions (4a) and (4b) was
obtained by devising a transformation that absorbs the term
associated with slope and converts (2a) into a simple heat flow
equation. The transformation may be given

h = we™ {6)

With this transformation the governing equation (2a) becomes
U T By (7a)

and the initial and boundary conditions
v, N=he™=f{x) atr=0 forl<sx<L (7h)

w0, H=0 atr>0 forx=0 (7¢c)

WL, D=0 att>0 forx=L (7d)

The solution of (7a) with initial and boundary conditions
(Th)—(7d) is given by Ogzisik {1980)

a

L
2 . SR /
wlx, ) = I E e~ sin [:'r,,.tj Flosin P’ dx (8)

=

with B, = mw/L. Substitution of the value of f(x) from (7b)
in (8) and applying the inverse transformarion gives the final
solution

-

-‘In s S
s

m=1

s §= 1",

“ 4 B

If the aquifer is considered horizontal, the boundary-value
problem is defined by (2b), (4a), and (4b) and the analytical
solution may be obtained by putting 5 = 0 in (9)

4hy s
. i
L . T, Bm

This solution is similar to the solution proposed by Dumm
(1954).

Analytical solutions of Boussinesq's equation linearized by
Werner's transformation as given by (3a) and (35) with initial
and boundary conditions (5a) and (56) were obtained using
the same technique mentioned above. The transformation em-
ployed to (3a) is similar to (6) except that, in place of A, z is
used. The transformed imtial and boundary conditions are also
the same as (75)—(7d) except that in (7b), in place of hy, z, is
used. The analytical solution for falling water tables in 2 slop-
ing aquifer in the form of z(x, ©) may be expressed

27a 3 C . S f ==Y A
zl).’,: I:I L 3 erx Far Z P af,r sin BMI {ﬁ” }
(11)

(10}

and i case of a horizontal aquifer, cnrra:.pundlug to (34), the
analytical solution may be wriilen

3 ~ail % ' (12)

s, B

The sblutions expressed by (11) and (12) are in the form of
z(x, ). To obtain the expression for hx, 1), the square root of
the expression for z(x, 1) is used.

z{x, =

Finite-Difference Solution

To obtain a finite-difference solution of nonlinear Boussi-
nesq equation (le) along with inital and boundary conditions
given by (4a) and (4b), (la) is made dimensionless with the
help of a set of variables, H = hfhy, X = x/L, and T = Khyt/
JL*. After transforming (la) with these dimensionless varia-
bles, the governing equation and inidal and boundary condi-
tions may be written

#H  (aH\ ‘ol oH
Hot 4+ —) A=) =52 13
ax? (‘ax, ‘ax) aT (13
or
1 3°H® aH\ 8H
it e (14)
2 ax? ax)~ ar .
HX, 0)=1 atT=0 for0<X<1| (15a)
HO. T =H(,T)=0 atT>0 forX=0andX=1 (15b)
wher = al/hy. |
Eq {14) can be discretized in Onite-difference fnrm as be-
low
B TH. [0 + (1 — 8)(HA-)F — 28(HL™)
AT 2Ax) et i .

201 — (HLF + BHLYY + (1 — 8)(H L)'

A mil 3
— o B ) + (1 — O)HG.)

i 6CH,L) — (1 — ©)(IL-)]

(16)

Here 6 may be assigned a value from 0 to 1, resulting in
explicit or implicit finite-difference schemes. Subscript m de-
notes a variable in the space grid and subseript n denotes a
wvariable in time.

Jain et al. (1994) proposed the [ollowing procedure to solve
the system of nonlinear equations. Let H = HE + V2. Sub-
stinating this in the above equation one gets
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V=

= IO(HL_, + Vi + (1 = B)HL_,)® — 20(H, + Vo)

2AX)
=21 — ONHP + O(F s + VL P + (1 = OXH.. )

el —— (B, + Vi) + (01— 9)}H,, OH .+ Vi)
IAX m+1 mit ) w-IJ { m—1 LAl Y
= (1 — 8} H.-4)] (17)

Keeping (AT/AX) = € and (ATHAX)) = h and neglecting the

terms of the order of O(V*), one gets the following chation:
R3]

f } + ViI—2ABH,, — 1]

P

V?I 1 [‘;\HHH‘I I

B AC&] :
= -

A
+ Vi [P«.BHL = [(HL- Y — AHD

5 AC c

+ (HL O+ — [, — H 2

Hea ] 5 [ ] (18)

By inputting different values of 8, one can obtain various fi-
nitc—diﬁ'erer:e schemes.
Il 6 = 0,/one can get an explicit finite-difference scheme

=

. ; . AC .
Yaa 2 [(Heei)” — 2(HL)° + (HaaiV'l = = [Hpas — Hini)
it {19a)

If 8 = 0.5, the Crank-Nicolson finite-difference scheme may
be written

AC 4 AC
ol |:Mf:,_, 4 ¢ 2VEIAH, + 1]+ Vi [AH’,‘,. - T}
= —AM(Hn-)® ~ 2HL) + (ML) + ACIH,.., — H.\]
(195)

and if 8 = 1.0, one can obtain a fully implicit finite-difference
scheme

, . AC : AC
Voei F A ey + = | = VRI2NT, +° 4] 4 Voo, | MHRsy 71—
L 2 2

AC
== l(h'r:. W = MHEE A (LY o Hes — H
- (19¢)

By putting A = 0 in (19a)—(19¢), the expression of the finite-
difference solution for falling water tables between tw con-
ventional level drains in a horizontal aquifer can be obfained.

This svstem of algebraic equations formed at a given time
step 15 a tridiagonal matrix for which a solution can be ob-
tained bj any of the standard algorithms available in various
texts of numenca] analysis and Vi_;, Vi, and Vi, can be
computed. To get the values at n + 1 time step (i.e., Hil,
HI', and ,,,+,'), the values of H,,_,, H,., and H.,., arc jadded
mntoe V.. Vs and Voo, rcspectwcly

Finite-Element Solution

A fintte-element solution of the dimensionless nonlinear
Boussinesq equation as shown by (13) or (14) along with in-
itial and houndary conditions (15a) and (156) was obtained
using Galerkin’s method, the details of which are given in
Pinder and Gray (1977). The flow domain is discretized as
=X, <X, <Xy <X, < <Xy <Xy= 1. Herc N rcpresents
the number of nodes and AX = X, — X, where i = 1, 2, 3,

. N — 1 =M, the number of elemnents.

Tu obtain the solution of Boussinesq’s equation by Galer-
kin’s method, a linear Lagrange polynomial is associated with
each node. A typical basis function associated with each node
X, as defined by Prenter (1975) is given below

(X — Xl.)_

! ] X -_— I g{' -— R‘ : - ;‘. 2[’]
.I\'( ] { I 3 F‘I} i=—1 = i f )

N(X) = 41 — X . r= X=X [20}
¥y [Y | X) for X; £ X = X b

The basis function N,(X) has the value unity at the node with
which it is associated and is zero at all the other nodes. The
basis function N(X) has a component in each of the two el-
ements joining at node X,. Hence, over the elements (X, ;, X}
and (X, X..,) there are two nonzero basis functions N._,(X),
NAX) and NAX), N..(X). The basis function N,(X) over the
elements (X, ,, X,) and (X,, X,,,) has already been defined by
(20a) and (206). The basis functions &,_,(X) over the element
(X;-1, X;) and N, (X) over the element (X, X.,) are given
below

(X — X) R . ;
N (X)) = [m for X, =X=X (20c)
. (X — X))
;"\-'_:+|[X_!=m for X, = X = X, (2060

The value of all other basis functions are zero over the cle-
ments (X;_;, X)) and (X, X..;). The solution is approximsted
by H*(X, I'} with the help of the basis functions as follows:

N .
HYX, T) = Y, ZITINGX) (21)
i=1

in which Z(T) = unknown ceefficients to be determined as a
part of the solution. The multplier Z(7T) associated with N;
(X) at node i 1s the value of H at i. Because there are only
two nonzero basis functions over an element (X, X..,), the
summation is performed only over two consecutive indices, i
and i + 1 to approximate the solution H*(X, T) over the el-

ement.
To carry out finite-element analysis, (13) or (14) may be

written
3 [  aH (ot A
LiHy=— | I )— — 22)
(H) ax( ax A[,_ax) ar =0 (22;

The expression H(X, T) is an approximation for H(X, T).
Hence its substitution in (22) leaves a residual L{II"), which
15 used to determine the coefficients Z.(T). As there are N
unknown coefficients to be determined, N constraints have to
be imposed on the residual L(H") to evaluate these coefli-
cients. In Galerkin's finite-element method, the coeflicients
Z(T) are determined by forcing the residual L{H") to be or-
thogonal to the basis functions N(X), wherei =1, 2,3, ...,
N. For this, the inner product of L(H™) with N.(X) has to be
zero; i.e.

(LIFYNEX)N =0 fori=12,3,....N (23)
Substitution of (22) in (23) yiclds

(2 ) o) ()

fori =123 .c.iN (24)

Hereafter for convenience H" is written as H. Integration of
(24) yields

aH
{H -"‘HXJ}

X—1 1

i { HH)
a3 — | dx
KD JD d‘l xJ H ‘;JX;

Y

I ]
3H 3H
— A [ TN A — | N dX =0
T o o7
fori=1,2,3,..., N (25)
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By substituting the value of H from (21) into (25}, a syslem
of N mtegml equations is obtained as below

T dz, 1xa [ anixy dvix)
2, | NLXON(X) d‘; dX + =~ » J ik ) FV7 7 dx
£ 3 X

dX dX

{H =

4 ZJ Non £ }z X {H%%-N,-(XJ}!

4 K=l
afl
" {H E-N_.(X]} fori=1,2,3,....1 N

X0 (26)

or

o

> E X)NU{‘) de+ E J‘dwx
Sl F=1 l.—

AN (X) "' ANAXD
Zidx + A 'S Ll
i .
I{H l‘i _{Haﬂ | f[}l'fl—]1?..,'3...._.h'7
X fx=1 . 08X} |z 27

Eq. (27) can be rewritten

(6] { } + [BI(Z') + AICHZ) = [F) (28)
where
[G1=G,= Y, J- NAXIN(X) dX (292)

1o < [ dNx) dN3X)
[B] = By =3 Z 2‘1 e e dx (200
g INAX
[Ci = C&- = z }4 N : c}; } aX (29¢c)
{(F;}=0 fori=2,3.4,....,.N—1 (294)

ar\ | [ aH ,
(£} = (nﬁ) ; {F.*-}=( (X) (2%, /)

/ urun

Coefficient matrices were evaluated and are given in the Ap-
pendix.
Eq. (28) may be written in finite-difference form

[G‘J {J(ﬂl__@} } iBI{z”l'T_'_ (i'nT)}
AT
+ A[CHZT + AT)} = (F(T)) (30
Let Z(T + AT) = Z(I") + V(T). Substitution of this relation
ship in (30) yiclds

(G { Vi?} + BUZAT) + 22ZTVIT) + V(D))

+ A[CHZ(T) + V() = {F(T)) (31)
Neglecting the terms of O(VHT)) gives
[GUVIT)} + AT[BY24(I)V(T)} + ATA[CH V(T

—AT|BHZHT)} — ATA[CHZ(T)} + AT{F(T)} (32)
ar
[{G] 4+ 2AT[BIZ(T)} + ATAICI{V(T))
- =AT|BUZYT)} = ATAICHZ(T)) + AT{F(T)) (33

The solution of this system of algebraic equations provides the
values of V(T ar different nodes. This V(T) value at a partic-

ular node is added to the value of Z(7T') at that node 1o get the
value of Z(T + AT) at that particular node for the next time
step. To obtain the solution for the water table profile in hor-
izontal aquifers, A is substituted as zero. The resulting ex-
pression will be the finite-element solution for falling water
tables between two conventional level drains in @ horzontal
aquiter.

Hybrid Finite Analytic Solution

Pi and Hjelmfelt {1994) solved an extended Dupuit-For-
chheimer equation to describe water table profiles and lateral
subsurface streamflow in a sloping aguifer using a hybrid finite
analyric method based on the approach of Chen (1988). A local
hIlEd.t.'l?Bd 1D Dupuit-Forchheimer equation was solved ana
Iytically in space and discretized in time by a simple difference
fcsrmttl The resultant system of algebraic equatipns approx-
imated the overall nonlinear ctﬁ.u because the cm:fncmnt of
dlﬂ"us.mn and the term (dk/8x)* were treated as constants only
in Lhi local regions. A four-point numerical formula pravided
stable and sufficiently accurate results with simple caleulations
and without small time steps. Steady-state profiles of water
table and lateral subsurface storm flow obtained from their
study compared well with the results of previous investigators.

Using the approach of Chen (1988), the hybrid finite ana-
Iytic solution of nonlincar nondimensionalized equations (13)
or (14), along with initial and boundary conditions defined by
(13a) and (156), was obtained. The procedure for obtaining
hybrid finite analytic solutions to describe falling water tables
between two conventional level drains is as follows.

If H associated with (3°H/3X™) in (13) is replaced by H,,
the dimensionless average depth of flow, it may be writien

LR (dH) A (aH‘J I aH

dX H,\aX H, \aX, H, aT

Assuming the terms VH (AR/AXY, LH (GH/AT), and A/H, as
constants denoted by C, E, and 25, respectively, in a small
subregion and performing integration, one gets the following
equation:

dH

E — 25 H=(E=CX + F (35)
The solution of this first-order ordinary differential equation
is

X 1
(E— CYy—44 | (36)
5y

HX) = G —

Discretization of (36) in space and time yields the following
L‘-L]LliiLTinS:

AX

| HNeGed™ 4 (E= )22 47 (37a)
25
AX

| Hinl = Ge* —(E- C],)—+ ! (378)
25,

H=G+1 (37¢)

because H;"' represents the point where AX = 0.
Simplification of these equations yield a tridiagonal matrix

AHI + BH'™ + CHY] =DM + E, (38)
where
F AX .
A, = =P 5y =1+ 2Ha.'\1i'i'-l"mnh{.?:dl} (39a.b)
g ¥ AX -
C= g S D= E;‘.’ ﬁ!mhu AXY (B%ed)
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AX ( sl

bt ] tanh(s AX)

X (3%9¢)

T 2H,s,
By solving the above tridiagonal matrix, one may obtain the
value of # at any space and time. The water table elevations
h in a sloping aquifer at any distance and time may be com-
puted by multiplying H with A,

It should be possible to obtain water table elevations in a
horizontal aquifer by putting A = (al/i) = 0 in the above
solution but then the expression becomes indeterminate, How-
cver, water table elevations in a horizontal aquifer niay be
obtained by substituting a very small value of o such as
0.00001 in the above solution without affecting its dene:‘al
stability.

EXPERIMENTAL MODEL

Chauhan (1967) conducted an experimental investigation on
& Hele-Shaw viscous flow model. The experiment for the hor-
izontal case was conductied at 68°F using Shell Tellus il 72,
which gave a permeability of 2.328 in./min. The sloping case
experiments were conducted at 72°F with a pcrmcabmn of
2.890 infmin. The initial oil profile was parallel to the imper-
meuble layer in all the tests, Midpoint fall of oil for several
time intervals was recorded visually above the impermeahle
layer and was reported for the cases of 0, 4, 6, and 8% slopes
of the impermeable barrier.

RESULTS AND DISCUSSION

The Boussinesq equation itsell contains a major simplifi-
cation as it reduces a 2D problem to a 1D problem by assum-
ing vertical energy losses are negligible compared Lo the hor-
izontal energy losses. All the analytical and numerical
solutions of such linearized and nonlinear Boussinesq equa-
tions mentioned above are also approximate solutions. But the
solutions of the nonlinear Boussinesq equation, which take
into account all the terms, are expected o perform belter than
those obtained for the linearized equations. To determine the
relatively betler solution among the solutions studied here, the
experimental results of midpoint falling water tables obtained
from the llele-Shaw model for nonsloping und sloping con-
ditions as reported by Chauhan (1967) were compared with

the values of midpoint decline of water tables obtained from
all the analytical and numerical solutions, To compare the ex-
perimental results with the midpoint falling water tables com-
puted from various theoretical solutions, the [ollowing param-
eter values were used. The initial water table above the drains
or impermeable barrier i, = 12 in., specific yield f = 1.0, spac-
ing between two drains L = 100 in., and hydraulic conductivity
for nonsloping and sloping cases K = 2.328 and 2.890 in./min,
respectively. In numerical solutions the dimensionless fime in
crement A1 and dimensionless space increment AX were taken
as 0.0001 and 0.01, respectively, The midpoint falling water
tables at 5, 25, 50, 100, 150, 200, 250, and 300 min for (, 4,
6, and 8% slope oblained from various solutions are given in
Tables 1-4

It may be observed from Table 1 that, for a nonsloping
condition, for a small time period in the beginning, the values
of water table elevations computed from analytical solution 1
are higher than those oblained from the experimental model.
With time, however, the values of the water lable elevation
computed from analytical solution I decrease rapidly as com-
pured to the experimental data, The water table elevations ob-
tained [rom analytical solution 11 are always higher than those
computed from analytical solution T and, for most of the time
period, values computed from this solution are higher than
those obtained from the experimental data. The values of water
table elevations computed by emploving finite-difference and
finite-element solutions are almost similar and marginally
higher than the values obtained from the experimental model,
The hybrid finite analytic solution predicts marginally higher
values compared to the experimental data, but these values are
marginally lower than the values predicted by finite-difference
and finite-clement solutions. Thus, values of midpoint fall of
water table with time as oblained from the hybrid finite ana
lytic solution are closest to the experimental results. The dif-
ference in the results obtained from mathematical and experi-
mental solutions mayv be attributed to the inaccuracy that
Boussinesq introduces under the given geometry, including not
taking the effect of seepage zone into account.

Note from Tables 24 that, for sloping cases (4, 6, and 8%
slope), the values of water table elevations computed from
various theoretical solutions show an altnost similar trend as
shown in the nonsloping case and the results computed from

TABLE 1. [xperimental and Computed M1d}1t1lnl Transient Fa 111115 Water Tables (in. ) for Ntnslopﬂm Case
Analytical so]ut]on Al]d;}lﬂ..ﬂ solution
Time Experimental T with Bawmann's IT with Wernet's Finite-difference Finite-element Hybrid finite
(min) results linearization 11:‘-.:::1.:1?.31'1011 solution solution analytic solmion
5 11.78 11.993 11.999 11.972 11,972 11.966

25 10.00 10.596 11.276 10.051 10.051 Y985

30 TR0 7.660 9.587 7.984 7.983 7.903
100 335 3.853 G790 5.6044 3.643 54800
150 4.05 1.938 4815 4.365 4304 4,282
200 3.35 0978 | 3411 3.558 3.558 3.479
250 2.80 0.496 | 2417 3.003 3.003 3.925
300 242 0.254 1 1.712 2.598 2.598 2.521

TABLE 2. Experimental and Computed Midpoint Transient Falling Water Tables for 49 Slope
Analytical solution Analytical solution
Time Experiinental I with Baumann's L with Wemner's Finite-difference Finite-clement Hyvbrid finite
{min) results linearization linearization solution solution analytic solution
5 11.75 11,995 11.998 11.926 11.927 11.901

25 9.75 9.520 10.861 9.1456 2.456 9.564
30 7.38 G447 8.794 236 T.235 7.242
100 4EG 2718 5.707 4.902 4.002 4814
150 3.65 1.148 3.703 3.690 3.690 3.607
200 2.86 0488 2.402 2.544 2044 2.864
250 2.47 0.210 1.558 2.437 2436 2.359
ann 1.98 0,093 1.011 2.067 2.067

1.991]
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TABLE 3. i:xp:rum.nid] and Computed Midpoint

Transient Falling Water * Iable:- tor 6% Slope

.-‘\nﬂ‘.l }rhcal solution

Anaytical solurion

Time Experimental I with Baumann'’s 1T with Werner's Finite-difference Finite-element Hybrid finite
{min) r-:aull: linearization lingarization Solution _,olui.lun analytic solution
5 1. ?4 11.994 11.99% 11.926 H '_’J’?? 11.901
25 9.64 9501 10.845 9444 0.443 0,452
50 7.20 6.391 B.756 7.208 7207 7114
100 4.465 2.662 5.648 4.850 4,849 4.762
150 3.55 1.111 3.642 3616 3615 3.533
200 262 0.467 2.549 2.849 2840 2770
250 2.11 01949 1.515 2321 2321 2,244
jUU 1.72 0.087 0.977 1.930 1.930 1.855
TABLE 4. FExperimental and (‘mnputed Mn:lpmm Transient Falling Water Tables for 8% Slope
Analytical solution Analytical sn]utmn
Time Experimental I with Baumann’s IT with Werner's Finite-difference Finile-¢lement Hybrid finile
{rmin}) results linearization linearization solution soluton analytic solution
5 11.72 11.994 11.998 11.926 11.926 ; 11.901
25 9.54 9.762 10,823 9.426 9.426 | 9.435
50 7.10 6313 8703 7.168 7168 ! 7075
L00 4.57 2.586 3.566 4.775 4.774 4,687
150 3.25 1.061 3.559 3.511 3.510 3.428
200 2.46 0.438 2.276 2714 2713 2.634
250 1.91 0,184 1.456 2.154 2.153 2078
300 1.48 0.080 0931 1.730 1.729 1.636
|
TABLE 5. Comparison of Theoretical Solutions with Experimental SUIutimi; for Nonsloping and Sloping Cases with L2 and Tchebycheff Norms
Analytical solution 1 Analytical solution I Finitg-difference Finite-clement Hybrid finite
i\cu:uis wilh Baumann’s linearization with Werner's linearization solution solution analytic solution
(2} Nonsloping Case (0% Slope)
L2 1.8Z7 1.028 (0.25] 0.250 0.178
Tehebycheff 2.304 1.787 0.315 0314 0.234
(k) Sloping Case (4% Slope)
L2 2018 0.854 0.114 0.113 0.093
Tehebycheif 2.502 lL414 0.294 0,294 0.186
(c) Sloping Case (6% Slope)
L2 1843 0.843 0.178 0.178 0.123
Techebycheff 2439 1.556 (.2209 0,229 0.188
= (d) Sloping Case (§% Slope)
L2 1.711 0.840 ’ 0,219 0218 0.149
Techebyeheff 2.189 1.603 0.261 0.260 0.181

the hybrid finite analytic solotion are closest o the experi-
mental results, followed by the results obtained from finite-
element and finite-difference solutions,

To compare the performance of various analytical and nu-
merical solutions with the experimental data, Euclidecan .2 and
Tchebycheff I, norms as reported by Prenler (1975) were em-
ployed to measure the goodness and accuracy of various the-
oretical solutions. The L2 norm, which gives the average dis-
tance of the theoratical solutions from the experimental maodel,
and the L. norm, which describes the maximum dilference
between the theoretical solutions and the experimental model,
were computed. The values of 1.2 and L. norms are given in
Table 5 for nonsloping and sloping conditions, respectively.

Note from Table 3 that tor the nonsloping as well as sloping
cases the least value of L2 and L. norms are obtained lor the
hybrid finite analytic solution. The ohserved performances of
various methods in decreasing order were finite-element so-
lution, finite-difference solution, analytical solution IT with
Werner's transformation, and analytical solution 1 with Bau-
mann's transformation. Thus, for both nonsloping and sloping
cases, the hybrid finite analytic solution may be used and con-
sidered as the best solution among all the solutions presented
here.

All three numerical solutions tested for the given geomertry

cre found convergent and stable at the selected space and
time increments, and no significant improvement in results was
cﬁbservcd on finer discretization of space and {time.

|
CONCLUSIONS

! Analytical solutions were obtained for the lincarized Bous-
sincsq equation using Baumann's method and Werner's
method of linearization. Numerical solutions|using finite-dif-
ference and finite-clement methods were ublam::d Eur the non-
hncar form of the Boussinesq equation. The h}rhm‘l finite an
alytic method was also used to solve the ncmil,ncar Boussinesq
equation. In the hybrid finite analytic method, the overall non-
linear effect could be preserved by the assembly of locally
analytic solutions. Performance of various theoretical solutions
with respect to experimental results were studied by comparing
the values of midpoint falling water tables obtained from an
experimental model with those obtained from theoretical so-
lutions employing L2 and L. norms. Results reveal that the
hybrid finite analytic solution predicis the best values of the
midpoint falling warter tables between two drains in a
horizontal/sloping aguifer, followed in decreasing order of per-
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formance by finite-element, finite-difference, and analytical so-
lutioms. However, for all practical purposes, any numerical so-
lution may be used to compute falling water tables and these
solutions should be preferred over approximate analytical so-
lutions for the given geometry.

APPENDIX. EVALUATION OF COEFFICIENT
MATRICES

1
(X — X OGue== [:)H! — Xpos)

1 |
3 H 3 (40a,b)

|
Xy = X%.y) fori=2,3,4,... . N— 1] (40¢)
|
G =g (X = Xo) fori=23,4,.. N |(40d)

1
Geny = 2 Moy — X) fori=1,2.3,..., N~ 1| (40¢)

1
= Bym g
|Bu=sk—xy MtIm - g [
B el + : fori=2,34 rlu 1
PEUES N D) T My =X T ey B
(40
1' r # -
B.-Hr=—m fori=1,2,3,....N— 1| (40i)
1
By = - fori=23,4,....N | 40/
2(X; — X))

Cu=~2i Cuw=ri Ca=0 40k

1= 3° = 9° i = (; —m)
1 1
("n' = _E; C‘r;+l = E {49”,0}
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